When you are responsible for the water that 21,677 people drink, including your own family and neighbors, you do your best to insure the quality of that water. That is why we are committed to providing our residents with the best water possible. Our trained and dedicated employees are working everyday to ensure your supply of safe drinking water.

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals, and in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Substances that may be present in source water include:

- Microbes such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.

- Inorganic contaminants, such as salts and metals, which can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.

- Pesticides and herbicides, which may come from a variety of sources, such as agriculture, stormwater runoff, and residential uses.

- Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, stormwater runoff, and septic systems.

- Radioactive substances which can be naturally-occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of certain substances in water provided by public water systems. Food and Drug Administration (FDA) regulations establish limits for substances in bottled water which must provide the same protection for public health.

Where Your Water Comes From

Your water comes from a blend of sources:

40% West Deptford
- Groundwater from wells in the Potomac-Raritan-Magothy (PRM) Aquifer.

60% New Jersey American Water Company
- Groundwater from wells in the PRM Aquifer
- Surface water from the Delaware River Treatment Plant at Delran N.J.
Current Water Issues

Some people may be more vulnerable to contaminants in drinking water than the general population. Immunocompromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune systems disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA and Center for Disease Control guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791).

You may be interested to know the following information:

- **Arsenic:** Testing can detect arsenic in quantities as low as 2 parts per billion.

- **Lead:** If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. West Deptford is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

- **Cryptosporidium:** Rivers, lakes, and reservoirs may contain this tiny microbe. It has not been found in underground aquifers, such as the PRM aquifer that supplies West Deptford. The surface water source (Delaware River) used by the New Jersey American Water Company to supply 60% of its water, is tested for Cryptosporidium. It has not been detected in the water supply.

- **Sodium:** Sodium is the principal cation in the hydrosphere. It is derived geologically from the leaching of surface and underground deposits of salt. The sodium ion is a major constituent of natural waters. For healthy individuals, the sodium intake from water is not important, because a much greater intake of sodium takes place from salt in the diet. However, sodium levels above the recommended upper limit may be of concern to individuals on a sodium restricted diet. The highest level of sodium detected was 101 parts per million. The Secondary Standard for sodium is 50 ppm.

- **Iron:** The recommended upper limit for iron is based on an unpleasant taste of the water and staining of the laundry. Iron is an essential nutrient, but some people who drink water with iron well above the recommended upper limit could develop deposits of iron in a number of organs in the body.

- **Perflourinated Chemicals (PFC's):** This is a newly regulated drinking water contaminant. As of September 2018, the ground water limits, which are the most stringent, have been set at 13 parts per trillion for PFNA. The Township continues to obtain test results from its municipal owned ground water wells.

Definitions

Maximum Contaminant Level Goal (MCLG)

The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLG’s allow for a margin of safety.

Maximum Contaminant Level (MCL)

The highest level of a contaminant that is allowed in drinking water, which is set as close to the MCLG as feasible using the best available treatment techniques.

Action Level (AL)

The concentration of a contaminant that, if exceeded, triggers a treatment or other requirement that the water system must follow.

PPM (part per million)

One in a million, one drop in 10 gallons, or one penny in $10,000.00.

PPB (parts per billion)

One in a billion, one drop in 10,000 gallons, or one penny in $10,000,000.00.

PPT (parts per trillion)

One in a trillion, one drop in 10,000,000 gallons, or one penny in $10,000,000,000.00.

pico Curie (pCi)

A unit used to describe the level of activity or decay of a radioactive element.

ND (Not Detected)

The contaminant was either not detected or was below the level which could be measured in a sample of water using the best available analysis techniques.

< : Less than

WATER FACT

There is as much water on the Earth today as there was thousands of years ago. In fact, it is the same water.
Perfluoroalkyl Compounds (PFC)

Q: What are Perfluoroalkyl Compounds (PFC)?

A: PFCs are a large group of synthetic fluorinated organic compounds that contain at least one fully fluorinated carbon atom and are widely used in manufacturing everyday products to make them more resistant to stains, grease and water. PFCs are used in non-stick cookware, stain resistant carpets and waterproof clothing.

Q: How are people exposed to Perfluoroalkyl Compounds (PFC)?

A: PFCs are used in manufacturing processes, so they are not usually present in high concentrations in most consumer products. PFCs are environmentally persistent and recalcitrant towards nature degradation. They would accumulate in fish and other animals that humans consume. Some PFCs are used in insecticides, firefighting foam and aftermarket carpet treatment. Therefore PFCs could be ingested or inhaled from products that use the chemicals and from environmental release of the chemicals.

Q: Are Perfluoroalkyl Compounds (PFC) in drinking water a concern?

A: The Environmental Protection Agency (EPA) and New Jersey Department of Environmental Protection (NJDEP) are regulatory agencies that are currently evaluating the health effects of PFC in the environment and in humans. As of September 2018, the New Jersey Department of Environmental Protection has approved an MCL of 13 parts per trillion for PFNA. The science is still evolving around this class of compounds.

Q: How are Perfluoroalkyl Compounds (PFC) regulated?

A: The EPA maintains an active program called the Contaminant Candidate List (CCL3), finalized on September of 2009 which includes two (2) perfluorinated compounds: Perfluorooctansulfonic Acid (PFOS) and Perfluorooctanic Acid (PFOA). In addition, six (6) other Perfluoroalkyl Compounds (PFC) continued to be evaluated by the EPA.

Q: Are there any New Jersey regulatory standards for Perfluoroalkyl Compounds (PFC)?

A: As of September 2018, the New Jersey Department of Environmental Protection has approved an MCL of 13 parts per trillion for PFNA.

Q: Are there any concerns with West Deptford’s drinking water supply with respect to Perfluoroalkyl Compounds (PFC)?

A: The West Deptford Township public water supply still remains in accordance with EPA guidelines and NJDEP regulations and all public safety requirements. West Deptford continued to provide regulated, safe drinking water to customers of its water system. The Township has embarked upon quarterly sampling of its raw water from all six (6) of the township supply wells along with the interconnection to the New Jersey American System, and the distribution system. We continue to closely monitor the results of this testing and take precautionary actions to safeguard the public water supply. In January of 2014, following a sampling event that identified PFNA above the guidelines, West Deptford Township voluntarily removed Well #3 from service and has not placed it back into service. In October of 2015, following a sampling event that identified PFNA above the guideline, West Deptford Township voluntarily removed Well #8 from service and has not placed it back into service.
Q: What about West Deptford Township residents who rely upon potable private wells for their drinking water?

A: West Deptford Township has been working in collaboration with the NJDEP and Solvay to continue the process of identifying private wells used for drinking water, sampling those wells and installing local treatment systems known as Point of Entry Treatment (POET) water system to remove the PFCs from the water prior to use. On November 30, 2015 West Deptford Township entered into a contract with the NJDEP to connect West Deptford Residents with private potable wells, which have tested positive for the presence of Perfluoroalkyl Compounds (PFC), to the West Deptford Public Water Supply System. Some of the funding of this program is coming from the NJDEP.

Q: What are the next steps for West Deptford Township regarding the Perfluoroalkyl Compounds (PFC) issue?

A: West Deptford Township will continue to work with the NJDEP and Solvay to address this issue. Sampling will continue on the public water supply system in order to ensure it remains within State requirements. The Township also remains current on the evolution of science around this subject. Additionally, the Township is in the process of evaluating treatment alternatives to remove the PFCs from the raw water supply. Lastly, the Township has provided property access to Solvay for several West Deptford Township properties in order to assist in the contaminant evaluation projects they have undertaken.

Q: Where can I obtain additional information on the subject of Perfluoroalkyl Compounds (PFC)?

A: There are numerous studies and informational resources on this subject on the internet and links exist on the EPA and NJDEP websites as well. If you don’t have access to the internet at your home or on your phone, stop by the West Deptford Public Library, they are a great resource for our community.

WATER FACT

97% of the water on Earth is salt water found in oceans and seas, and 2% is frozen. Only the remaining 1% is available for consumption.

Source Water Assessment

The New Jersey Department of Environmental Protection has completed and issued the Source Water Assessment Report and Summary for this public water system, which is available at www.state.nj.us/dep/swap, or by contacting the NJDEP, Bureau of Safe Drinking Water at (609) 292-5550.

The source water assessment performed on our six wells determined the following High, Medium, and Low susceptibility ratings:

<table>
<thead>
<tr>
<th></th>
<th>Pathogens</th>
<th>Nutrients</th>
<th>Pesticides</th>
<th>Volatile Organic Compounds</th>
<th>Inorganics</th>
<th>Radio-nuclides</th>
<th>Radon</th>
<th>Disinfection Byproducts Precursors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sources</td>
<td>H M L</td>
</tr>
<tr>
<td>Wells-6</td>
<td>6 6 6 6 5 6 1 4 1 1 5 6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The rating reflects the potential for contamination of source water, not the existence of contamination. It does not mean a customer is or will be consuming contaminated drinking water. Public water systems are required to monitor for regulated contaminants and to install treatment if any contaminants are detected at frequencies and concentrations above allowable levels, NJDEP found the following potential contaminant sources within the source water assessment areas for our sources:

- Agricultural Land Use
- Population Density
- Urban Land Use
- Impervious Surfaces
- Commercial / Industrial Land Use
- Septic Tank Density
- Distance to Wetlands
Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the EPA's Safe Drinking Water Hotline (1-800-426-4791). The State of New Jersey allows us to monitor for some contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of our data, though representative, are more than one year old.

<table>
<thead>
<tr>
<th>REGULATED CONTAMINANTS</th>
<th>UNIT</th>
<th>RANGE DETECTED</th>
<th>HIGHEST LEVEL DETECTED</th>
<th>MAXIMUM CONTAMINANT LEVEL ALLOWED</th>
<th>MCL GOAL</th>
<th>SAMPLE SITE</th>
<th>SOURCE/COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrite</td>
<td>ppm</td>
<td><0.050 (ND)</td>
<td><0.050 (ND)</td>
<td>1.0</td>
<td>1.0</td>
<td>Wells</td>
<td>Erosion of natural deposits</td>
</tr>
<tr>
<td>Nitrate</td>
<td>ppm</td>
<td><0.050 (ND)</td>
<td><0.050 (ND)</td>
<td>10</td>
<td>10</td>
<td>Wells</td>
<td>Erosion of natural deposits</td>
</tr>
<tr>
<td>Copper</td>
<td>ppm</td>
<td>0.014 - 0.482</td>
<td>0.482</td>
<td>(AL) 1.3</td>
<td>1.3</td>
<td>Customer</td>
<td>Corrosion of household plumbing system and erosion of natural deposits</td>
</tr>
<tr>
<td>Lead</td>
<td>ppb</td>
<td>0.00 - 2.00</td>
<td>2.00</td>
<td>(AL) 15</td>
<td>0</td>
<td>Customer</td>
<td>Corrosion of household plumbing systems</td>
</tr>
</tbody>
</table>

INORGANIC CHEMICAL TAKEN IN 2017

Antimony	ppb	<0.0003 (ND)	<0.0003 (ND)	6.0	6.0	Wells	Discharge from petroleum refineries
Arsenic	ppb	ND - 1.70	1.70	10	0	Wells	Erosion of natural deposits
Barium	ppm	0.0184 - 0.122	0.122	2	2	Wells	Erosion of natural deposits
Beryllium	ppb	<0.09 (ND)	<0.09 (ND)	4	4	Wells	Discharge from industries and metal refineries
Cadmium	ppb	<0.15 (ND)	<0.15 (ND)	5	5	Wells	Erosion of natural deposits
Chromium	ppb	<1.80 (ND)	<1.80 (ND)	100	100	Well	Erosion of natural deposits
Cyanide	ppb	<5.0 (ND)	<5.0 (ND)	200	200	Well	Discharge from factories and ore processing sites
Fluoride	ppm	0.76 - 1.50	1.50	4	4	Well	Erosion of natural deposits
Mercury	ppb	<0.05 (ND)	<0.05 (ND)	2	2	Well	Erosion of natural deposits
Nickel	ppb	<2.8 (ND)	<2.8 (ND)	100	100	Well	Erosion of natural deposits
Selenium	ppb	0.88 - 5.0	5.0	50	50	Well	Erosion of natural deposits
Sodium	ppm	40.8 - 101	101	50	-	Well	Erosion of natural deposits
Thallium	ppb	0 (ND)	0 (ND)	2	0.5	Well	Discharge from factories and ore processing sites

RADIOLOGICAL Gross alpha activity pCi/l

- 1.13 - 3.96 3.96 15 0 Well Erosion of natural deposits

Combined Radium – 228 & 226 pCi/l

- 0.5 - 0.792 0.792 5 0 Well Erosion of natural deposits

TOTAL TRIVALENT CHROMATES

- 14.3 - 65.0 65.0 80 0 Customer By-product of drinking water chlorination

Haloacetic Acids Five ppb

<table>
<thead>
<tr>
<th>SECONDARY CONTAMINANTS</th>
<th>UNIT</th>
<th>RANGE DETECTED</th>
<th>HIGHEST LEVEL DETECTED</th>
<th>RECOMMENDED UPPER LIMITS</th>
<th>MCL GOAL</th>
<th>SAMPLE SITE</th>
<th>SOURCE/COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chloride</td>
<td>ppm</td>
<td>22.9 - 103</td>
<td>103</td>
<td>250</td>
<td>-</td>
<td>Well</td>
<td>-</td>
</tr>
<tr>
<td>Corrosivity</td>
<td>-</td>
<td>-0.40 to -1.24</td>
<td>-1.24</td>
<td>±1.0</td>
<td>-</td>
<td>Well</td>
<td>-</td>
</tr>
<tr>
<td>Hardness</td>
<td>ppm</td>
<td>21.5 - 80.0</td>
<td>80.0</td>
<td>Range 50-250</td>
<td>-</td>
<td>Well</td>
<td>Soft water</td>
</tr>
<tr>
<td>Iron</td>
<td>ppm</td>
<td>0.151</td>
<td>0.151</td>
<td>0.3</td>
<td>-</td>
<td>Well</td>
<td>-</td>
</tr>
<tr>
<td>Manganese</td>
<td>ppm</td>
<td><0.01</td>
<td><0.01</td>
<td>0.05</td>
<td>-</td>
<td>Well</td>
<td>-</td>
</tr>
<tr>
<td>pH</td>
<td>-</td>
<td>7.46 - 7.95</td>
<td>7.95</td>
<td>Range 6.5 to 8.5</td>
<td>-</td>
<td>Well</td>
<td>-</td>
</tr>
<tr>
<td>Sulfate</td>
<td>ppm</td>
<td>10.9 - 40.8</td>
<td>40.8</td>
<td>250</td>
<td>0</td>
<td>Well</td>
<td>Erosion of natural deposits</td>
</tr>
</tbody>
</table>

MICROBIOLOGICAL

Total Coliform Bacteria

- 0 0 1 positive monthly sample 0 Customer Naturally present in environment 351 samples taken

Iron: The secondary Recommended Upper Limit (RUL) for iron is based on an unpleasant taste of the water and staining of laundry. Iron is an essential nutrient, but some people who drink water with iron levels well above the RUL could develop deposits of iron in a number of organs in the body.

Sodium: For healthy individuals the sodium intake from water is not important, because a much greater intake of sodium takes place from salt in the diet. However sodium levels above the Recommended Upper Limit (RUL) may be of concern to individuals on a sodium restricted diet.
VOLATILE ORGANIC COMPOUNDS

<table>
<thead>
<tr>
<th>Substances</th>
<th>Unit</th>
<th>Range Detected</th>
<th>Highest Level Detected</th>
<th>Recommended Upper Limits</th>
<th>MCL Goal</th>
<th>Sample Site</th>
<th>Source/Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dichloromethane (Methylene chloride)</td>
<td>ppm</td>
<td><0.3 (ND) – 0.50</td>
<td>.50</td>
<td>5</td>
<td>0</td>
<td>-</td>
<td>Discharge from pharmaceutical and chemical factories</td>
</tr>
</tbody>
</table>

The New Jersey Department of Environmental Protection required West Deptford Township to monitor for Volatile Organic Contaminants. Yearly monitoring was conducted during 2017, twenty-six other contaminants were tested and none were detected.

WATER QUALITY PARAMETERS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Range Detected</th>
<th>MCL Goal</th>
<th>Sample Site</th>
<th>Source/Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orthophosphate</td>
<td>ppm</td>
<td>0.21 - 0.35</td>
<td>NA</td>
<td>N/A</td>
<td>Customer Sequestering agent for groundwater</td>
</tr>
<tr>
<td>Alkalinity</td>
<td>ppm</td>
<td>31.8 – 83.4</td>
<td>N/A</td>
<td>N/A</td>
<td>Customer Measure of ability to neutralize acidity</td>
</tr>
</tbody>
</table>

UNREGULATED CONTAMINANT MONITORING RULE

HAA5 ppm 2.261 - 9.190 9.190 60 N/A Customer By-product of drinking water chlorination
HAA6Br ppm 1.490 - 10.446 10.446 N/A N/A Customer Unregulated
HAA9 ppm 3.212 - 17.236 17.236 N/A N/A Customer Unregulated
1032: Manganese ppm 1.629 - 45.471 45.471 N/A N/A Well Unregulated

UCMR 4 is administered by the United States Environmental Protection Agency.

New Jersey American Water Treatment Plant 2018 Data Table of Detected Contaminants
Regulated contaminants not listed in this table were not found in the treated water supply.

REGULATED SUBSTANCES

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Compliance Achieved</th>
<th>MCLG</th>
<th>MCL</th>
<th>Highest Compliance Result</th>
<th>Range Detected</th>
<th>Source/Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrate</td>
<td>ppm</td>
<td>Yes</td>
<td>10</td>
<td>10</td>
<td>1.52</td>
<td>NA</td>
<td>Runoff from fertilizer use; industrial or domestic wastewater discharges; erosion of natural deposits.</td>
</tr>
<tr>
<td>Turbidity</td>
<td>NTU</td>
<td>Yes</td>
<td>NA</td>
<td></td>
<td>TT = 1 NTU</td>
<td>0.08</td>
<td>Soil runoff</td>
</tr>
<tr>
<td></td>
<td>%</td>
<td>Yes</td>
<td>NA</td>
<td></td>
<td>TT = % of samples <0.3 NTU</td>
<td>100%</td>
<td>Soil runoff</td>
</tr>
</tbody>
</table>

TREATMENT BYPRODUCTS PRECURSOR REMOVAL

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Compliance Achieved</th>
<th>MCLG</th>
<th>MCL</th>
<th>Highest Compliance Result</th>
<th>Range Detected</th>
<th>Source/Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Organic Carbon (TOC) %</td>
<td>Yes</td>
<td>NA</td>
<td>TT ≥35% Removal</td>
<td>41%</td>
<td>41% - 69%</td>
<td>Naturally present in the environment</td>
<td></td>
</tr>
<tr>
<td>Ratio of Actual/ Required TOC Removal</td>
<td>Ratio</td>
<td>Yes</td>
<td>NA</td>
<td>TT: Running Annual Average =1.0</td>
<td>1.16</td>
<td>1.16 - 1.96</td>
<td>Naturally present in the environment</td>
</tr>
</tbody>
</table>

DISINFECTANTS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Compliance Achieved</th>
<th>MCLG</th>
<th>MCL</th>
<th>Highest Compliance Result</th>
<th>Range Detected</th>
<th>Source/Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorine ppm</td>
<td>Yes</td>
<td>NA</td>
<td>TT = ≤0.20</td>
<td>.51</td>
<td>0.51 - 1.08</td>
<td>Water additive used to control microbes</td>
<td></td>
</tr>
</tbody>
</table>

Footnotes
1 100% of the turbidity readings were below the treatment technique requirement of 0.3 NTU. Turbidity is a measure of the cloudiness of the water.
2 We monitor turbidity because it is a good indicator of water quality. High turbidity can hinder the effectiveness of disinfectants.

WATER FACT

About 6,800 gallons (25,700 liters) of water is required to grow a day’s food for a family of four.
Regulated Substances

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>Compliance Achieved</th>
<th>MCLG</th>
<th>MCL</th>
<th>Highest Compliance Result</th>
<th>Range Detected</th>
<th>Source/Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>INORGANICS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Barium (2017)</td>
<td>ppm</td>
<td>Yes</td>
<td>2</td>
<td>2</td>
<td>0.1</td>
<td>ND - 0.1</td>
<td>Discharge of drilling wastes; discharge from metal refineries; erosion of natural deposits</td>
</tr>
<tr>
<td>Nickel (2017)</td>
<td>ppm</td>
<td>Yes</td>
<td>NA</td>
<td>NA</td>
<td>64</td>
<td>ND - 64</td>
<td>Erosion of natural deposits</td>
</tr>
<tr>
<td>Nitrate</td>
<td>ppm</td>
<td>Yes</td>
<td>10</td>
<td>10</td>
<td>1.49</td>
<td>ND - 1.49</td>
<td>Runoff from fertilizer use; industrial or domestic wastewater discharges; erosion of natural deposits</td>
</tr>
<tr>
<td>TURBIDITY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turbidity</td>
<td>NTU</td>
<td>Yes</td>
<td>NA</td>
<td>TT = 1 NTU</td>
<td>0.08</td>
<td>0.04 - 0.08</td>
<td>Soil runoff</td>
</tr>
<tr>
<td></td>
<td>%</td>
<td>Yes</td>
<td>NA</td>
<td>TT = % of samples <0.3 NTU</td>
<td>100%</td>
<td>NA</td>
<td>Soil runoff</td>
</tr>
<tr>
<td>TREATMENT BYPRODUCTS PRECURSOR REMOVAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Organic Carbon (TOC)</td>
<td>%</td>
<td>Yes</td>
<td>NA</td>
<td>TT ≥ 35% Removal</td>
<td>41%³</td>
<td>41% - 69%</td>
<td>Naturally present in the environment</td>
</tr>
<tr>
<td>Ratio of Actual/ Required TOC Removal</td>
<td>Ratio</td>
<td>Yes</td>
<td>NA</td>
<td>TT; Running Annual Average ≥1.0</td>
<td>1.16³</td>
<td>1.16 - 1.96</td>
<td>Naturally present in the environment</td>
</tr>
<tr>
<td>DISINFECTANTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorine (Surface Water)</td>
<td>ppm</td>
<td>Yes</td>
<td>NA</td>
<td>TT = ≥0.20</td>
<td>0.05¹</td>
<td>0.51 - 1.08</td>
<td>Water additive used to control microbes</td>
</tr>
<tr>
<td>RADIOLOGICALS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alpha Emitters</td>
<td>pCi/L</td>
<td>Yes</td>
<td>0</td>
<td>15</td>
<td>3.78</td>
<td>4.61 - 4.8</td>
<td>Erosion of natural deposits</td>
</tr>
<tr>
<td>Combined Radium (226/228)</td>
<td>pCi/L</td>
<td>Yes</td>
<td>0</td>
<td>5</td>
<td>1.49</td>
<td>ND - 1.49</td>
<td>Erosion of natural deposits</td>
</tr>
</tbody>
</table>

Footnotes

1. Nickel monitoring is required. Currently there is no established MCL or MCLG.
2. 100% of turbidity readings were below the treatment technique requirements of 0.3 NTU. Turbidity is a measure of the cloudiness of the water and a good indicator of water quality. High turbidity can hinder the effectiveness of disinfectants.
3. Data represents the lowest removal of Total Organic Carbon (TOC).
4. Data represents the lowest residual entering the distribution system from our surface water treatment plant.
5. The State of New Jersey allows us to monitor for certain contaminants less than once a year because the concentrations of these contaminants are not expected to vary significantly from year to year. Some of the data, through representative, are more than one year old.

Did You Know?

The Top 10 List On Conserving & Protecting Groundwater

1. Dispose of chemicals properly.
2. Take used motor oil to a recycling center.
3. Limit amounts of fertilizer.
4. Take short showers.
5. Shut water off while brushing teeth.
6. Run full loads of dishes and laundry.
7. Check for leaky faucets and have them repaired.
8. Water outside only when necessary.
Average Use For Common Household Tasks

How Much Water Does It Take?

- **Washing Machine**: 20 to 40 gallons per load
- **Hand Washing Dishes**: up to 20 gallons per load
- **Automatic Dishwasher**: 6 to 12 gallons per load
- **Bath**: 20 to 50 gallons
- **Shower**: 2 to 10 gallons per minute
- **Toilet**: 3 to 7 gallons per flush
- **Faucet**: 2 to 4 gallons per minute
- **Garden Hose (1/2 inch)**: 300 gallons per hour

Sources of Information

- **West Deptford Township Water Department**
 - www.westdeptford.com
 - 400 Crown Point Road, West Deptford, N.J. 08086
 - Administration: 845-4004 extension 127 or 128
 - Billing: 845-4004 extension 104 or 105
 - Maintenance: 845-4004 extension 127
 - Emergencies: 845-2300

- **U.S. Environmental Protection Agency**
 - Safe Drinking Water Hotline: 1-800-426-4791

- **NJDEP** - www.state.nj.us/dep

- **Drought** - www.njdrought.org

- **New Jersey Board of Public Utilities**
 - Division of Customer Relations:
 - 1-800-624-0241 or 1-973-648-2350
 - Two Gateway Center, Newark, N.J. 07102

Prepared in compliance with the 2005 Environmental Protection Agency National Primary Drinking Water Regulations for Consumer Confidence Reports.